Exercise 8

Prove that two nonzero complex numbers z_{1} and z_{2} have the same moduli if and only if there are complex numbers c_{1} and c_{2} such that $z_{1}=c_{1} c_{2}$ and $z_{2}=c_{1} \overline{c_{2}}$.

Suggestion: Note that

$$
\exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right)=\exp \left(i \theta_{1}\right)
$$

and

$$
\exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \overline{\exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right)}=\exp \left(i \theta_{2}\right)
$$

Solution

Suppose that there are two nonzero complex numbers, z_{1} and z_{2},

$$
z_{1}=r_{1} e^{i \theta_{1}} \quad z_{2}=r_{2} e^{i \theta_{2}}
$$

and that they have the same moduli.

$$
\left|z_{1}\right|=\left|z_{2}\right| \quad \rightarrow \quad\left|r_{1} e^{i \theta_{1}}\right|=\left|r_{2} e^{i \theta_{2}}\right| \quad \rightarrow \quad r_{1}=r_{2}
$$

If we choose c_{1} and c_{2} to be

$$
\begin{aligned}
& c_{1}=r_{1} \exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \\
& c_{2}=\exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right),
\end{aligned}
$$

then

$$
\begin{aligned}
& z_{1}=c_{1} c_{2}=r_{1} \exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right)=r_{1} e^{i \theta_{1}} \\
& z_{2}=c_{1} \overline{c_{2}}=r_{1} \exp \left(i \frac{\theta_{1}+\theta_{2}}{2}\right) \overline{\exp \left(i \frac{\theta_{1}-\theta_{2}}{2}\right)}=r_{1} e^{i \theta_{2}}=r_{2} e^{i \theta_{2}} .
\end{aligned}
$$

The first part of the proof is complete. Suppose now that there exist complex numbers, c_{1} and c_{2}, such that $z_{1}=c_{1} c_{2}$ and $z_{2}=c_{1} \overline{c_{2}}$. The aim is to show that z_{1} and z_{2} have the same moduli. If we have

$$
\begin{aligned}
& c_{1}=a_{1}+i b_{1} \\
& c_{2}=a_{2}+i b_{2},
\end{aligned}
$$

then

$$
\begin{aligned}
& z_{1}=c_{1} c_{2}=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)=a_{1} a_{2}-b_{1} b_{2}+i\left(a_{1} b_{2}+a_{2} b_{1}\right) \\
& z_{2}=c_{1} \overline{c_{2}}=\left(a_{1}+i b_{1}\right)\left(a_{2}-i b_{2}\right)=a_{1} a_{2}+b_{1} b_{2}+i\left(-a_{1} b_{2}+a_{2} b_{1}\right),
\end{aligned}
$$

and the magnitudes are

$$
\begin{aligned}
& \left|z_{1}\right|=\sqrt{\left(a_{1} a_{2}-b_{1} b_{2}\right)^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right)^{2}}=\sqrt{a_{1}^{2} a_{2}^{2}+a_{2}^{2} b_{1}^{2}+a_{1}^{2} b_{2}^{2}+b_{1}^{2} b_{2}^{2}} \\
& \left|z_{2}\right|=\sqrt{\left(a_{1} a_{2}+b_{1} b_{2}\right)^{2}+\left(-a_{1} b_{2}+a_{2} b_{1}\right)^{2}}=\sqrt{a_{1}^{2} a_{2}^{2}+a_{2}^{2} b_{1}^{2}+a_{1}^{2} b_{2}^{2}+b_{1}^{2} b_{2}^{2}}
\end{aligned}
$$

in fact equal. Therefore, two nonzero complex numbers, z_{1} and z_{2}, have the same moduli if and only if there are complex numbers, c_{1} and c_{2}, such that $z_{1}=c_{1} c_{2}$ and $z_{2}=c_{1} \overline{c_{2}}$.

